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Kalman Filter
Pos, Vel, Att…

• Work conducted within the DREAM project which aims to enhance localization and 
perception for public transport through robust, AI-based navigation modules.

• Vehicle navigation during GNSS outage relies on information from further sensors & 
auxiliary modules, for which often AI solutions exist.
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Gyroscope Correction Network
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(Acc. & Ang.-Rate)

Corr. Gyro. 
Measurement

GNSS/INS Kalman Filter
Pos, Vel, Att…

Gyroscope Correction

• Network „corrects“ gyroscope 
measurements.

• Better at handling non-
Gaussian and non-linear 
errors than traditional 
methods.

~33k parameters
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Gyroscope Correction Network

Zero-Velocity
Detection Network
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Zero-Vel. Likelihood GNSS/INS Kalman Filter
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Zero-Velocity Detection:

• Detection of standstill allows 
for „freezing“ of states and 
therefore no drift.

• Network estimates binary 
zero-velocity detection via 
likelihood.

~33k parameters

~10k parameters
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NHC Variance Network:

• Non-Holonomic Constraints 
state that a vehicle on a road 
has neither lateral or vertical 
velocity.

• Due to constraint violations 
(e.g. slip) additional noise is 
introduced.

• Network estimates variances 
of NHC noise for Kalman 
Filter.

NHC variances

~33k parameters

~10k parameters

~10k parameters
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Our Goal: 
Enhance navigation performance 
in GNSS denied situations.

• Build upon existing solutions 
and further develop those.

• Adapt and enhance models to 
further datasets.

• Make the system small, 
efficient and therefore fast 
enough to be able to be run on 
a embedded device 
(e.g. Raspberry Pi) in real-time.

• Enhance robustness and 
generalization of system.

~33k parameters

~10k parameters

~10k parameters
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Multitask Deep 
Neural Network Kalman Filter

Pos, Vel, Att…
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Network Architecture
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Kalman Filter
Pos, Vel, Att…

~12k 
parameters

~200 parameters

~200 parameters

~200 parameters



Training: Datasets

• 4Seasons dataset from Technical University of Munich.
• Public benchmark dataset.
• GNSS-RTK & Visual-Inertial-Odometry fused Ground Truth.
• Various driving scenarios, surfaces & weather conditions.
• ~1hr of data used.

• In-house ANavS dataset, evaluation in paper.
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https://cvg.cit.tum.de/data/datasets/4seasons-dataset


Multitask Deep Neural Network

Kalman Filter

Training Process
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Orientation Loss
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Results of Gyro.-Correction

• Major improvement between 27% and 90.4%

• Orientation remains static during standstill

• Shows that network captures both dynamic 
and static behavior of the IMU signals
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Performance Improvement over all data

Axis RMS 95-Percentile

Roll 27.5 % 34.8 %

Pitch 41.4 % 49.1 %

Yaw 90.4 % 87.0 %

MTDNN
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Figure: Exemplary result  for one sequence.



Results of Zero-Vel. Detection
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• Network output closely matches ground truth with minimal delay and 
avoids false positives during motion

• Statistics:
• 94.7 % precision 
→ few false positives

• 96.0 % recall 
→ few missed detections

• 95.3 % F1-score 
→ balanced system
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Figure: Exemplary result  for one sequence.

• Network output closely matches ground truth with minimal delay and 
avoids false positives during motion

• Statistics:
• 94.7 % precision 
→ few false positives

• 96.0 % recall 
→ few missed detections

• 95.3 % F1-score 
→ balanced system



Results of NHC Variance Estimation
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MTDNN

En
co

de
r Gyro.

Zero-Vel.

NHC
• Position error reduced by 29.9 % (RMS) and 25.7 % (95th percentile) 

through adaptive NHC variance estimation

• No manual tuning needed – the network learns to adapt constraints 
based on motion context

• Stable performance over time, reducing drift and improving Kalman 
filter accuracy in GNSS-degraded environments

Scalar Position Error over all data

RMS [m] 95-Percentile [m]

Static (Base) 36.79 81.05

MTDNN 25.80 60.24
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Gyro NHC Zero-Vel.

IMU only Raw Static -

Gyro. Corr. MTDNN Static -

All. Corr. MTDNN MTDNN MTDNN

Summary & Outlook

Full integration of all auxiliary 
modules reduces the position error 
very effectively

Each task contributes to 
improvement

Smallen down the computational 
needs by ~75%

No manual tuning required

→

→

→

Extend to multimodal inputs
Explore self-supervised training
Integrate MTDNN into a Multisensor 
System (with GNSS, LiDAR…)



Contact & Project Information

Frieder Schmid 

• Email: frieder.schmid@anavs.de

• Code and dataset will be published at 
https://github.com/anavsgmbh/MTDNN 

• ANavS GmbH - Advanced Navigation 
Solutions, Munich (www.anavs.com)
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DREAM Project

• funded by the EUSPA as part of the 
Fundamental Elements Programme

• contract number: EUSPA/GRANT/03/2022.

• https://dream-project-eu.com/

mailto:frieder.schmid@anavs.de
https://github.com/anavsgmbh/MTDNN
http://www.anavs.com/
https://dream-project-eu.com/
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